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Abstract. The longitudinal polarization function of a quasi-one-dimensional electron gas
(Q1DEG) confined in a semiconductor quantum well wire (QWW) is given in the random-
phase approximation (RPA) for the cases whereT = 0 K and T 6= 0 K, taking into account
the lack of spatial invariance in the plane of the cross-section of the QWW. It is given as
a sum of terms in the form of a spatial function, composed from the wavefunctions, and
their complex conjugates, of two single-electron states and the polarizability for each allowed
transition. The polarizability for a given transition is studied in terms of its frequency, momentum
and temperature dependences, relating its behaviour with the electronic topological transition
occurring in the Fermi domain. The results are analysed by representing the electron gas
involved in the transition as composed from two quasi-particle subgases with different effective
masses within the conduction band as an excitonic gas.

1. Introduction

The polarizability of the electron gas has been studied by numerous authors on account of
its central importance in the study of many physical properties of the electron assembly.
While exchange and correlation effects have been included for 3D systems in various
approximations [1], the most common model used for 2D and, especially, 1D [2–13] is
the RPA. The purpose of this paper is to stress some aspects of the 1D RPA polarizability
not hitherto studied.

The analysis of the behaviour of the polarizability in low-dimensional electron gases
is particularly important, because it allows us to study the appearance of charge-density
waves (CDW) in systems like quasi-two-dimensional electron gases [14]. Some authors
have suggested that the enhancement of the polarizability due to CDW instabilities is an
attribute of the spatial geometry acquired by the Fermi domain in such Q2DEG. These
instabilities provoke sharp peaks for values of the momentum transferred,q, equal to 2κF ,
whereκF is the 2D Fermi wavevector.

It was noted in a study of the specific heat of the Q1DEG in a QWW that this has a
singularity of theλ-type [15]. In the present work this, as well as the behaviour of any
other physical property depending on the polarizability, is traced back to the fact that the
1D case has a specific topological feature. This, which will be called aone-dimensional
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electronic topological transition(1DETT), has in turn direct implications for the physical
properties depending on it.

The purpose of the present paper is to give an explicit formula for the longitudinal
polarizability atT = 0 K which permits the analysis of the behaviour of the Q1DEG and
its dependence on the 1DETT. Section 2 is devoted to the derivation of the longitudinal
polarizability for theT = 0 K andT 6= 0 K cases. Section 3 includes an analysis of the
dependence of the polarizability on the occurrence of a 1DETT, section 4 is devoted to the
analysis of the numerical results and finally some conclusions are drawn.

2. Longitudinal polarizability in a Q1DEG

The function obtained through the calculation of the longitudinal dielectric response
function—as was done in [16]—is understood as the longitudinal polarizability in a Q1DEG.
However, we did our calculations using the inverse of the longitudinal dielectric response
function in a Q1DEG.

The inverse dielectric function is the kernel resolvent of the Dyson equation for the
screened electron–electron interaction energy taken in an approximation that is determined
in the analysis. For the Q1DEG, for which there is only translational invariance in the
z-direction, this Dyson equation can be written as

US(ω, q;ρ,ρ′) = U0(q;ρ,ρ′)
+
∫

dρ1

∫
dρ2 U0(q;ρ,ρ1)50(ω, q;ρ1,ρ2)US(ω, q;ρ2,ρ

′) (1)

whereU0(q;ρ,ρ′) is the bare electron–electron interaction energy which can take into
account the dielectric discontinuity in the system and50(ω, q;ρ1,ρ2) is the irreducible
polarization factor described by the bubble diagram in the RPA [1], given by

50(iωp, q;ρ,ρ′) = − 1

β

∑
iωr

G(iωr, q;ρ,ρ′)G(iωr − iωp, q;ρ,ρ′) (2)

whereρ = (x, y) is the position vector in the cross-section plane of the QWW. Here the
Matsubara Green function (MGF) for the Q1DEG is given by

G(iωr, q;ρ,ρ′) =
∑
m,n

φm,n(ρ)φm,n(ρ
′)

i h̄ωr − Em,n(q)+ EF (3)

in which the single-electron states are characterized by the dispersion relationEm,n(q) and
by the wavefunctionφm,n(ρ) which are the envelope functions of the conduction band taken,
for instance, in the Hartree approximation or with exchange and correlation effects calculated
self-consistently in the usual way, which uses the characteristics of the structure given by
the matching conditions for the interfaces of the system.q represents the one-dimensional
momentum transferk′ − k; EF gives the Fermi level (chemical potential) measured from
the bottom of the one-dimensional conduction subband for the electron gas.

Using (3) and (2) and performing the frequency summation as in [1] (for the case
whereT = 0 K, the frequency summation becomes an integral), we obtain, after analytical
continuation in frequency has been carried out in the usual way [1],

50(ω, q, T ;ρ1,ρ2) =
∑

m,n;m′,n′
50(ω, q, T ;m, n;m′, n′)φ∗m,n(ρ)φm,n(ρ′)φm′,n′(ρ)φ∗m′,n′(ρ′)

(4)
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which is the sum over all possible transitions in the system of terms in the form of the
polarizability factor and a spatial function depending on four monoelectronic wavefunctions
of the two states involved in a particular transition. The polarizability factor is given by

50(ω, q, T ;m, n;m′, n′) = 2

L

∑
k

nF (Em,n(k))− nF (Em′,n′(k + q))
h̄ω + i h̄η + Em,n(k)− Em′,n′(k + q) . (5)

Here the factor 2 comes from the two possible projections of the spin;nF (Em,n(k)) is
the Fermi–Dirac distribution function andL is a normalization length of the QWW in the
z-direction.

The sum in (4) can be reorganized in the following way: consider the two terms
involving the same statesm, n andm′, n′. Their spatial parts are the same and (4) can be
rewritten as

50(ρ1,ρ2) =
∑

m,n,m′,n′
R(n,m; n′m′)φ∗m,n(ρ)φm,n(ρ′)φm′,n′(ρ)φ∗m′,n′(ρ′) (6)

with

R(n,m; n′, m′) = 50(n,m; n′, m′)+50(n
′, m′; n,m). (7)

In equations (6) and (7) and from now on, the dependences onω, q andT are everywhere
understood.

Let us concentrate our attention on equation (7), i.e., the polarizability factor of one
individual transition. As for a transition to take place one state must be empty and the other
occupied, using (5) it is not difficult to see that atT = 0 K only one of thenF -functions in
the numerator will be zero. Reorganizing this sum, it can be written as

R(n,m; n′m′) = P0(m, n;m′, n′)+ P0(m
′, n′;m, n) (8)

where

P0(m, n;m′, n′) = 2

L

∑
k

{H1−H2} (9)

H1 = nF (Em,n(k))

h̄ω + i h̄η + Em,n(k)− Em′,n′(k + q)
H2 = nF (Em,n(k))

h̄ω + i h̄η + Em′,n′(k)− Em,n(k + q) .

In the second term of (9), ask is a summation variable, it can be changed ask′ → k + q
and then

P0(m, n;m′, n′) = 2

L

∑
k

nF (Em,n(k)) {G1−G2} (10)

G1 = 1

h̄ω + i h̄η + Em,n(k)− Em′,n′(k + q)
G2 = 1

h̄ω + i h̄η + Em′,n′(k − q)− Em,n(k) .

P0(n,m; n′, m′) is the longitudinal polarizability function which we aimed to derive in our
calculations.

The polarization function in then given by (6) with each term in the sum formed by the
polarizability given in (10) and the spatial function just described above.
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3. The polarizability function in the case of electronic topological transition

Let us concentrate our attention on the polarizability given in (10) for a particular transition
between two given monoelectronic states and let us describe its behaviour considering the
possible 1DETT that may occur in the system.

We write the energies of the subbands (m, n) of a QWW as

Em,n(k) = h̄
2k2

2m∗
+ Em,n (11)

wherek is the 1D wavevector andm, n label the quantized levels in 2D. The Fermi domain
is then 1D and consists of segments ink-space. The number of such segments—often just
one in practice—is the number of populated subbands.

We define the parameter1(m, n) as

1(m, n) = EF − Em,n. (12)

As shown elsewhere [15], the 1DETT takes place for1(m, n) = 0, whenEF is at the
critical level Em,n. The specific heat, for instance, has a singularity of theλ-type in the
vicinity of 1(m, n) = 0 [15].

Then, from (12) and (11), the polarizability (10) can be written as

P0(n,m; n′, m′) = 2

L

∑
k

{
nF (Em,n(k))

A1
− nF (Em,n(k))

A2

}
(13)

A1 = h̄ω + i h̄η + [1(m, n)−1(m′, n′)]− h̄2

2m∗
[
(k + q)2− k2

]
A2 = h̄ω + i h̄η + [1(m′, n′)−1(m, n)]− h̄2

2m∗
[
(k − q)2− k2

]
.

Now, the electron–hole pair excitations have in the 1D case a specific topological feature
in that every excitation, by producing a hole in the Fermi domain, changes its connectivity,
as it disconnects two fragments of a segment ink-space. This has physical implications, as
will be seen presently.

For the evaluation of (13) we transform the sum into an integral in the usual way. For
T = 0 K the integration can be carried out analytically; one thus obtains for the real part
of the polarizability

<{P0(ω, q,0;µ)} = m∗

πh̄2q
log

∣∣∣∣∣ (h̄ω)2− (E(−)µ (q))2

(h̄ω)2− (E(+)µ (q))2

∣∣∣∣∣ (14)

and for the imaginary part

={P0(ω, q,0;µ)} = m∗

πh̄2q

{
arctan

[
2h̄η h̄ω

(h̄ω)2− (E(−)µ (q))2

]
− arctan

[
2h̄η h̄ω

(h̄ω)2− (E(+)µ (q))2

]}
(15)

whereµ represents the combination of indices(n,m; n′, m′). To obtain (14) and (15), we
considered only linear terms in ¯hη, η being an infinitesimal frequency. Here we have put

E(±)µ (q) = 1(m′, n′)−1(m, n)+ h̄
2q2

2m∗

[
1± 2kEF

q

]
(16)

where kEF is the one-dimensional Fermi wavevector;q could reach values in the range
−2kF 6 q 6 2kF . Equation (14) is the same as that obtained in [10] for ¯hω = 0.
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Figure 1. A graphical representation of the dispersion equations for ‘light particles’ (E)
(continuous line) and ‘heavy particles’ (H ) (dashed line);1(m′, n′)−1(m, n) = 0 is assumed
in equation (16).F1 ≡ EF andkF1 ≡ kF are valid for all of the figures.

Here (16) can be interpreted as follows: the electron gas involved in the transition from
subbandm, n to subbandm′, n′ behaves as if composed of two gases of quasi-particles, one
of which we call ‘light’ (corresponding to the+ sign) and will also call a quasi-electron
and represent by the letterE, and the other ‘heavy’ (corresponding to the− sign) which
we will also call a quasi-hole and represent by the letterH . Then (16) are the dispersion
relations for the quasi-particlesE andH corresponding to the gas involved in the transition
m, n→ m′, n′.

For T 6= 0 K an analytical expression forP0 cannot be obtained; however, expressions
(16) still appear in the longitudinal polarizability function, with the same interpretation.

Then, like all of the collective properties of the system, the polarizability is dominated by
the geometry of the Fermi domain and the changes in its topology determine the behaviour
of the property.

4. Results and discussion

We shall assume that from the outset there is a void in the Fermi segment due to a Fermi
energy above, at least, its first critical valueE11; this is represented byE0 in all of the
following figures. We normalize all of the energy functions with respect toE0, so the
following results are independent of the cross-section geometry and the kind of material of
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Figure 2. Adimensional real and imaginary parts of the longitudinal polarizability function
P0(ω, q, T ;m, n;m′, n′) versush̄ω/E0; T = 0 K is assumed in the calculations. One can see
in the inset the existence of a minimum for={P0} inside a very small interval of ¯hω/E0.

which the semiconductor QWW is composed if just intrasubband electronic transitions are
considered. For intersubband ones, it is necessary to take account of the geometry of the
cross-section of the wire. Our analysis starts with theT = 0 K case.

According to the definition ofq, equation (16) represents the dispersion equations for
particlesE andH which can be an electron (E) and a hole (H ) at the conduction band
(see figure 1). This result was obtained under the assumption that1(m′, n′)−1(m, n) = 0,
i.e. only intrasubband transitions are considered due to the electron–electron interaction. As
a result, we observe a Coulombic gap at the conduction band due to the electron–electron
interaction in the QWW. The energy levels corresponding to a transition appearing in (10)
belong to coupled states ofE andH in the same way as for the exciton formation from
the conduction band and the valence band in a bulk semiconductor. An external action of
energyh̄ω, for a fixed value ofq, provokes the excitation of one or the other kind of quasi-
particle, changing the behaviour of the polarizability of this particular gas (see figure 2).
Here it is also assumed that only intrasubband electronic transitions occur.

As h̄ω increases from zero toE(−)µ (q), mainly theH -particles provide a screening from
the external action, i.e., provide a polarizability in opposition to the external action. This
behaviour is inferred from the sign of (14) in this range. At the same time, a small negative
imaginary part of the polarization occurs, as seen from (15). For ¯hω = E(−)µ (q), a resonance
occurs in transitions corresponding to theH -particles and the polarizability has a negative
maximum value. ForE(−)µ (q) < h̄ω < E(+)µ (q), the real part of the polarizability changes
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Figure 3. The adimensional real part ofP0 versush̄ω/E0 for different values ofq/2kF .

its sign at the value

h̄ωb =
√
(E

(+)
µ (q))2+ (E(−)µ (q))2. (17)

For h̄ωb < h̄ω < E(+)µ (q), the excitation of this electronic gas is dominated by theE-
particles which provide a positive real part, i.e. a reinforcement of the external action, with
an imaginary part that is always negative.

For h̄ω = E(+)µ (q), the E-particles give the maximum reinforcement to the external
action. Forh̄ω > E(+)µ (q), both the real and the imaginary parts of the polarizability tend
to zero in accordance with the fact that at this frequency the electronic gas cannot follow
the external action.

From equation (9) it can be seen that the imaginary part of the polarizability does
not change sign throughout the energy interval. Physically, this can be explained as a
consequence of the fact that only the electron gas can receive energy from the external
agent and energy cannot be produced due to its action. It has a negative sign and it can be
shown that it has a minimum at

h̄ωa = 1√
6

√
ET +

√
E2
T + 12(E(+)µ (q)E

(−)
µ (q))2 (18)

ET = (E(+)µ (q)+ E(−)µ (q))2.

This behaviour ofP0(ω, q,0;µ), although easy to obtain and clear to see, does not
correspond to the macroscopic behaviour of the whole electronic gas because one has to
sum the contributions from all possible transitions allowed in the system to get the total
response; then when one particular gas (corresponding to the transitionµ1⇒ m1, n1, m

′
1, n
′
1)

has a screening behaviour (i.e. opposite to the external action), some other transitions will
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contribute in the same way but others could exhibit reinforcement behaviour. Then, the
whole Q1DEG could have any behaviour macroscopically and the behaviour cannot be
predicted before the numerical calculation is done.

In figure 3 we can observe the behaviour of the polarizability versus ¯hω for two different
values ofq. Changes inq cause a change in the values of ¯hω for which resonance occurs.
For 0< q < kF , the resonance due toH -particles occurs for values of the energy less than
EF . At q = kF , the resonance of heavy particles occurs exactly atEF . For kF < q < 2kF ,
this resonance is reduced again to energies less thanEF and will occur ath̄ω = 0 when
q = 2kF , and starts to move to higher energies forq > 2kF . At the same time, the resonance
of E-particles always moves to higher energies asq increases. Then, for small values ofq
the ‘boiling’ of the electronic gas is dominated by one half of the Fermi segment (the Fermi
void) for small energies and for big values ofq it is dominated by the other half of the
Fermi segment. This behaviour can be seen as follows: the holesH are the contribution
of electrons that belong to states closer at the edge of the Fermi segment. Asq increases,
electrons of states deeper in the Fermi segment could participate in the transition, i.e., the
states approaching the centre of the segment. Atq = kF , the electron at the centre of the
segment can participate in the transition. ForkF < q < 2kF , the electrons of the other
half of the Fermi segment could participate in the transition, receiving a great momentum
in the opposite direction to the one they are travelling in due to the external action, and
they dominate the response. The screening is in the opposite direction from the direction
of travel of the electrons belonging to the other half of the Fermi segment at high energies.
Here, as in figure 1 and figure 2, only intrasubband electronic transitions are considered.

In figure 4 we show the temperature dependence of the polarizability function. Here
it is plotted as the real part of the polarizability (<{P0}) versush̄ω for different values of

Figure 4. The temperature dependence of the adimensional real part ofP0; the temperatures
selected were 0 K, 4.2 K and the Fermi temperature of the Q1DEG.EF /E0 was taken as 1.76.
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T . As can be observed, the increments of the temperature provoke a smoothness of the
logarithmic resonant effects in the polarizability function without causing any qualitative
change in its behaviour with respect to ¯hω for small enough temperatures. For values of the
temperature greater than 10 K, a displacement of ¯hωb occurs (to higher values), whereupon
the real part of the polarizability changes its sign. Nevertheless, the coexistence of the two
kinds of quasi-particle is still occurring. This behaviour is in perfect agreement with the
temperature characteristic of the electron distribution function. This result is independent of
the value ofq/2kF , i.e. independent of the energy position of the electron inside the Fermi
segment. In figure 4,q/2kF = 0.5 andEF/E0 = 1.76 were taken on the assumption of an
intrasubband electron–electron scattering mechanism.

Figure 5. The electronic transition dependence of the adimensional real part ofP0 versus
h̄ω/E0. T = 0 K; q/2kF = 1.0 andEF /E0 = 1.5. The shifts of the curves represent the kind
of transition that has been realized.

In figure 5 we show the adimensional real part ofP0 versush̄ω/E0 in the cases of intra-
and intersubband electronic transitions due to electron–electron interaction. We present the
results forT = 0 K; however, forT > 0 K the situation is similar. As was remarked at
the beginning of this section, for the case of intersubband transitions it is necessary to take
account of the cross-section geometry of the QWW. For practical purposes, we assume a
rectangular cross-section with an infinite potential energy barrier at the frontiers of the QWW
which simplify the expressions in the calculation. The intra- and intersubband electronic
transitions were considered as coming from the basic energy levelE11 = E0 up to higher
levels, asEF/E0 = 1.5, which means that only the basic level is occupied. Using the curve
for the transition(1, 1) → (1, 1) as a reference, the other curves for different transitions
shift to higher energies. This means that the external action must supply more energy, for
the same value ofq, for the same polarizability effect to be achieved for transitions to
higher levels.
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Figure 6. The real part ofP0 versusq/2kF . The temperature was taken as 4.2 K, but for
T = 0 K the result is similar.

Figure 6 shows the real part ofP0 versusq for fixed values of the external energy ¯hω

given to the Q1DEG. The figure is obtained forT = 4.2 K, but the behaviour is practically
the same as that for theT = 0 K case except for the sharpness of the singularities. The
most significant fact is the result for ¯hω = 0, i.e., the static case. In this case there is only
evidence of existence ofH -particles with negative<{P0}; this shows that in the absence
of an external action only theH -particles give a screening in the Q1DEG. Forq = 2kF ,
a logarithmic singularity is produced which is the well known Fröhlich–Peierls transition
that is infinite forT = 0 K and smoothed forT > 0 K. If we follow L J Sham [18], the
Peierls transition is an electron–phonon interaction effect in Q1DEG due to the aperture of
the Coulombic gap in the conduction band [19].

In [10] it was shown that this singularity is also obtained taking into account only the
electron–ionized impurity interaction for a Q1DEG. Now, in this paper, taking only the
electron–electron interaction into account, we reproduce the Fröhlich–Peierls singularity.
From all of this, we can conclude that this effect is due just to the dimensionality
condition of the system, which provokes the appearance of a ‘gap’ in the conduction band,
and not by any other particular interaction considered. Again, here we considered only
intrasubband electronic transitions for the electron–electron scattering mechanism. However,
for intersubband transitions the results are the same.

The one-dimensional electronic topological transitions (1DETT) have been presented
as lying behind all of the results mentioned before. For intra- or intersubband electronic
transitions,P0 depends on the Fermi levelEF . This fact could give us the relation between
the Fermi void and any value of critical energy below it. Let us selectE0 for the sake
of comparison. In figure 7 we show the adimensional real part ofP0 versusEF/E0 for
different values ofq/2kF . We took theT = 0 K case for the calculations, but for the
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Figure 7. The real part ofP0 versusEF /E0 for different values ofq/2kF . The external action
was considered energetically as ¯hω/E0 = 1 and the temperature was taken asT = 0 K.

T > 0 K case the results are quite similar. As a relevant fact, we might mention that for
a fixedq/2kF (even askF varies whenEF varies), this represents electrons which occupy
certain positions inside the Fermi segment. Hence, whenEF increases, the electronsE and
the holesH become excited only in a particular Fermi segment. For very deep electrons,
whenEF increases the effect of polarizability is balanced by both subgases and only for
particular values ofEF will one of them dominate over the other. Beside this, the behaviour
of <{P0} shown in figure 7 is similar to that mentioned in the former analysis; it is due,
in this case, to the enhancement of the Fermi void. The electronic resonance effect, even
in the intrasubband case, will depend on the electronic topological transitions which have
occurred.

5. Conclusions

The behaviour of the polarizability factor in a Q1DEG was studied and related to the
occurrence of a 1DETT. The simulation of the electronic gas involved in the transition,
studied as being composed of two quasi-particle subgases, was addressed; this explains
qualitatively the behaviour of the polarizability when one changes the parameters of the
system.

We emphasized that the polarizability behaviour is only indirectly tested in all of the
measurements, due to the existence of several subbands which participate in the ‘boiling’ of
the electronic gas when an external action is present. It is necessary to take into account the
whole energy spectrum of single-electron states when considering the macroscopic effects of
the external action on the gas, and the polarizabilities of different transitions will contribute,
each in its particular way, to the screening of the external action.

There is in progress work studying the inverse dielectric function of a Q1DEG in
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a semiconductor QWW, considering this behaviour of the polarizability for the allowed
transitions.
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